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D I S C U S S I O N  O F  A P A R T I C U L A R  M A T H E M A T I C A L  

M O D E L  F O R  C O N T R O L L I N G  S T E E L  C A R B U R I Z A T I O N  

V. B. Glasko and Yu. V. Glasko UDC 539:219.3 

We formulate an inverse problem of  controlling the carburization of  steel parts in a gas furnace, when on 

termination of  the process the partial pressures of gases in the atmosphere are determined by the prescribed 

characteristics of  the distribution of  carbon in the surface layer o f  the metal  Stable and economic algorithms 

are suggested for solving the problem. 

The process of saturation of the surface layer of steel parts with carbon in gas furnaces is described by a 

nonlinear diffusion equation, which because of the smallness of the hardened layer thickness can be referred to a 

half-space: 0 < x < + oo [1 ]. This process is preceded by the establishment of an equilibrium state of the gases 

forming the atmosphere, as a result of which a certain carbon potential of the atmosphere is produced, namely, the 

concentrati,-,1 of atomic carbon C in wl.% absorbed by the metal surface. In work [2 ], which was devoted ,-  the 

problem of automating the process of carburization of carbon steels, the carbon potential was considered as a 

governing parameter that, along with the process duration t, provided a priori values of concentration at a given 

depth: u = {ui(xi, /)}, l ---- 1 ,  2. As means of such automation special nomograms were suggested that made it possible 

to assign in advance the optimum regime of carburization q = {C, t} for specimens with different initial contents of 

carbon co at different temperatures T of the furnace. 

However, the value of C cannot be controlled directly. Therefore, in the present work as a governing 

parameter we take the set of partial pressures p of the gases forming the atmosphere. In this case the problem is 

divided into two problems: a) u --, q and b) q --, p, so that lhe quantity C plays the part of an intermediate 

parameter. We propose a correct (in the sense of [3 ]) statement of these problems pertaining to the class of inverse 
problems [4 ]. 

Another feature that distinguishes the present work from previous ones is that instead of the nomograms, 

which inevitably limit the range of parameters, we suggest a universal economic algorithm based on asymptotic 

(t-,. oo) representations of the solution of a non-linear diffusion problem. Such an approach is justified by the 

long duration of carburization; it leads to determination of the desired pair of q from a closed system of nonlinear 

equations with two unknowns. 

Finally, this algorithm is realized in a C computer program that accounts also for the alloying effect, with 

the corresponding parameter e being determined automatically by the prescribed technological code. 

1. The physical parameters of the carburization process are the diffusion coefficient D and the coefficient 

of mass exchange with the carbon-containing atmosphere fl, expressed by the formulas: fl = ro exp ( - b / T ) ,  D = 

D(u) = Dok(u), where k(u) = I + kou, and DO = xt exp ( - a f T  + e). Here T, K, is the temperature; k0, ~:0, xl, 

a, and b are numerical parameters that are independent of both the temperature and the type of the steel; e is 
tl 

the alloying parameter, which is described by the formula e = In 10.Y (k'i /T + ki')u i, where n is the number of 
i = 1  

impurities from the series R - { Ni, Si, Cr, Mo, V, etc.}, ui are the corresponding concentrations, kj. and ki" are 

known constants for each impurity. The latter fact allows one to calculate in advance the value of e by the prescribed 

technological code for the type of steel (for example, 15Kh, 18KhGT, etc.), while the C computer language makes 

M. V. Lomonosov Moscow State University, Moscow, Russia. Translated from Inzhenerno-Fizicheskii 

Zhurnal, Vol. 69, No. 5, pp. 794-799, September-October, 1996. Original article submitted July 25, 1994. 

612 1062-0125/96/6905-0612515.00 �9 1997 Plenum Publishing Corporation 



Fig. 1. C h a r a c t e r i s t i c  d e r e n d e n c e s  of the op t imum values  of cont ro l  

paramete: 's t (sec) and C (%) on the alloying parameter  at different values 

of the surface concentration of carbon {T -- 1203 K; u2 = 0.5%; x = 0.001 

m): l) ul = 0 .6%,  2) 0.8, 3) l, 4) 1.2, 5) 1.4. 

easy calculations for an arbi t rary value of T by selection from a pair of tables. We realized this possibility in a 

special subroutine preceding the procedures described below. 

In [5] it was shown that the concentration field for the geometrical model (adopted by us) of carbon 

diffusion into a metal is asymptotically equal to 

u (x, t) = Yo (~) + (1/2'7) k (C) Y0 (~) + O (1/,12). ( I )  

H e r e  ~ = x / ( 2  D4~0I ), r/ = 2flq77~0 , C en t e r s  into Eq. (1) by v i r tue  of the mass  e x c h a n g e  cond i t i on  

D(u)(Ou/Oxl  x=0) =/5(C - u l x---o), and the function yo(s e) is determined by the conditions 

(k(Yo) Yo)' + 2~Y '0=0 ,  Y0(0) = C ,  Y0(+ co) = c 0 ,  (2) 

where c o is the initial content of carbon in the metal. 

Now we use Eqs. (1) and (2) as a basis for formulating the first of the inverse problems for the control of 

carburization, the initial data for which, i.e., the objective of control, are the preassigned values of the concentration 

ul on the surface (xl = 0) and at a certain depth u2 = u(x2, t) on termination of the process. 

Then ,  after neglecting terms of the order  of l / r]  2, Eq. (1) leads to a system of two nonlinear equations for 

the pair of unknowns q = {C, t}, where t is the process duration. 

Eliminating r /= q(q) ,  we obtain an expression for t = t(C), t = Do(k(C)~(O)/2f l(Ul - C)) 2, that is defined, 

and  in the on ly  possible  way,  in the region of C > ul. On the o the r  hand ,  for C in the same  region  of 

def in i t ion  we o b t a i n  a n o n l i n e a r  e q u a t i o n  wi th  t he  lef t  s ide  p r e s c r i b e d  a l g o r i t h m i c a l l y :  

/ (C)  - (Yo (~2) - u2)yo(0) + (ul - C))~)(~2) = 0, where ~2 = ~2(C) = fl(x2(ul - C)/Dok(C)Yo(O). 
An algori thm for solving the latter equation contains two essential elements: a) the quanti ty yo(0) is 

determined at ~ c h  C from condition (2) using a ballistic method by analogy with [6 l; b) since yo(0) is determined 

algorithmically, while Yo(~2) and Yo(~2) can be found, for example, by the R u n g e - K u t t a  method from Eq. (2) at 

the prescribed values of yo(0) and yo(0) on arrival at the point e2, then the function f(C) is de termined algo- 

rithmically and the root of the equation t iC)  = 0 can be found by the fork method with preliminary (until a change 

of sign is detected) sounding of the semiaxis C > ul. 
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Thus,  parametrization of the problem, that is, replacement of the carburization profile by two reference 

points, leads to a mathematically correct [3] statement of this inverse problem. 

Figure 1 gives some results of an automated calculation of the governing parameters q as functions of the 

alloying parameter  in the range I EI < 0.1 typical for the considered set of types of steel. Also given in this figure 

are the values of the objective parameters u to which the above results refer. 

2. The  second problem of control involves the obtaining of information about the equilibrium partial 

pressures of the atmosphere components corresponding to the prescribed carbon potential C. Such an inverse prob- 

lem has not been studied in the technological literature, but the initial premises used by us for calculating the 

quantity C from the prescribed state of the atmosphere are found, for example, in [1 ]. 

The atmosphere will be considered as a closed constant-volume medium filled with the gases HI,  H20, 

CH4, CO, CO2, and O2, to which the partial pressures Pi (i = 1 . . . . .  6) correspond. According to [1 ], in the 

equilibrium state these quantities are connected by three independent relations: 

a g~ I 2 4 K~ I 2 2  P4 = KIP2P3/Pl  , P5 = ( / K 2 )  P2P3/Pl  , P6 = ( / K 3 )  p 2 / P l  , (3) 

where K/= K/(T), j = 1,2, 3 are the equilibrium constants. In turn, the quantity r/= 4.65- 10-2C, i.e., the equilibrium 

concentration of carbon in atomic fractions, at small concentrations (r/ < 0.2) is determined from the equation 

(r/) = In (r/ /(a C (1 - 5)7))) + b 0 + b l / T  + (b2r//(l - r l ) ) / T  + e = 0 ,  (4) 

where bo, bl,  and b2 are known constants [1 ], ac  is the activity of atomic carbon in its interaction with a metal. 

This activity can be determined, for exameple, on the basis of the reaction 2 C O ~  C + CO2, and if K* =/(*(73 is 

the corresponding equilibrium constant [I ], then 

�9 2 * 2 
a C = K p4 /P5  = K K2P3 /P l  . (5) 

Thus,  in order to calculate the carbon potential for the indicated composition of the atmosphere,  it is 

sufficient to known two independent partial pressures: Pl and P3. We note that if, in addition to these pressures, 

the vapor pressure P2 is also given, we can determine the full set of partial pressures in the equilibrium state. 

Now we turn our attention to the inverse problem of interest for us. It is evident that  at a prescribed C, 

i.e., )7, the equation w(r/) = 0 determines ac  unambiguously. But then Eq. (5) determines a set of equilibrium states 

for which 

2 
P3 = q P l ,  (6) 

where q = a c / K * K  1. In this case, as we can see according to Eqs. (3) and (5), 

P4 K l q  (P2/Pl) P5 (K~Iq/K2) (P2/Pl) 2 (I~1 = , = , P6 = / K 3 )  ( P 2 / P l )  2 ,  (7) 

so that the set of equilibrium states corresponding to the given C turns out to be dependent on two parameters: the 

hydrogen pressure Pl and the relative humidity of the atmosphere ). = p 2 / P l .  Consequently,  the inverse problem 

considered in its natural ("primary") formulation is no longer correct, because of the absence of uniqueness. 

To select a unique solution of their possible number,  it is necessary to use additional information about it 

and to prescribe the pair; for example, according to the technological conditions, {Pl, ,'1-} is sufficient for the purpose. 

On the other  hand, as seen from Eq. (4), large variations of ac  and, consequently, of pressures P4 and P5 at fixed 

values of Pl and 2 can correspond to small variations of C near the right boundary of the region of admissible values 

of C (~ (0; 4.3). However, by eliminating a rather wide half-neighborhood of the point Ccr = 4.3, it is possible to 
guarantee stability. 
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Fig. 2. Characteristic (for p ~ 105 Pa) dependences of the hydrogen pressure 

in the furnace atmosphere on C (~o) at different levels of relative humidity/1 

(T = 1203 K, p =  105 Pa): 1) /l = 0.1, 2) 0.3, 3) 0.7, 4) 1.0, 5) 1.5, 6) 2.0, 7) 

5.0. Pl, Pa; C, ~o. 

Another possibility for correct formulation of the inverse problem is the assignment of a certain combination 
6 A 

of Pi as additional information. The sum of the equilibrium pressures Z Pi = P, with Pi > 0, is the simplest of 
i=1 

these. From here, with allowance for Eqs. (6) and (7) as well as the equation P2 =/1Pl it follows that Pl = 

(((1 +/1)2 + 4q(p - ~,o(/1)) 1/2 - (1 +/1)) /2q,  w h e r e  c o(/1) = )tgl(q + KI/1((q/K2) + ( l /K3)) ) .  T h e  c o n d i t i o n  of 

positivity of Pl imposes a restriction on/1 from above: we can see that ,t E (0, ~') if ~" is the only positive root of 
/ x  

the quadratic trinomial ~o(2) - p, which is explicitly expressed in terms of q and three equilibrium constants. 

Figure 2 presents the functions Pl (C) at different values of 2 for a typical temperature of carburization. We 

can see that at small values of ~. there are regions of the values of C in which control is virtually unstable: variations 

of C, being substantial for control purposes, correspond to small variations of Pl. On the other hand,  for each 

quantity C it is possible to indicate a value of 2 in whose neighborhood C is stable with respect to small variations 

of Pl, and the inverse problem under  consideration also has the property of stability. 

In this connection, as a second condition for a selecting a solution it is natural to require that the value of 

Opl/OC differ from - 1  at the minimum. We note that the indicated derivative is determined explicitly by the 

expressions for Pl and ac,  and,  due to the monotonicity of Pl (C), at each/1 E (0, ~ this requirement uniquely 

determines the relative level of atmosphere humidity:/1" = .,1.(C). When/1 =/1", the value of p~(C) is also uniquely 

determined. 

Both inverse problems are combined in a single C program that can serve as a tool for solving problems of 

carburization control within the framework of the physicomathematical model considered here. The latter can also 

be extended on the basis of the statements used above. 
3. Of interest for "manual" selection of the necessary parameters of the atmosphere is the problem of 

prediction of the carbon potential from given initial conditions Pio (i = 1, ..., 6) obtained experimentally. Such data 

allow one to supplement undefined system (3) with three equations following from the mass conservation law. Since 

the number  of atoms of each element in the composition of gas molecules (H, C, O) in a closed atmosphere is 

invariable, and, according to the Clapeyron-Claus ius  law, this number  for each gram-molecule of a compound 

containing on,: or another  gas is proportial to the pressure of the corresponding gas, then the following linear 

combinations of pressures remain unchanged: 

P2 + P4 + 2P5 + 2p6 = a 0 ,  2Pl + 2P2 + 4P3 = ,80 ' P3 + P4 + P5 = ~'0, (8) 

where ao, fl0, and Yo are just determined by the initial pressures. 
System of Eqs. (3) and (8), which determines the equilibrium state, is closed. Its possible inconsistency, 

established by a mathematical  experiment, implies that for the prescribed initial state equilibrium is impossible. 
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Fig. 3. Error  in the de te rmina t ion  of C versus the inaccuracy of pressure  

ass ignment  at different  values of the carbon potential  (e, %; 6, %; T = 1203 

K; p =  105 Pa): 1) C = 4 ~ ,  2) 3, 3) 2, 4) 1, 5) 0.5. 

For exper imenta l  calculat ions,  an algori thm based on the following considerat ions  appears  to be effective. 

l) After subst i tut ion of Eq. (3) into Eq. (8) the ex t reme equations in Eqs. (8) turn out to be cubic with 

respect to P2, so that one of these can be replaced by the resul tant  of the both. Denoting for brevity Pl - x, 

P2 = Y, and P3 = z = 0 .5(f l0/2  - x - y), we arrive at to the following system: 

Ys = P (x) + ( -  1) s+l (D (x)) 1/2 (s = 1, 2 ) ,  

2 4 
~o s (x) = 0.Sz s (x) (x 4 + KlY s (x) x + Ay s (x)) - yO x = O. 

(9) 

Here  p(x)  = 0.5(Kt(]3o/2 - x) - 2xa) / (K~ + 4Bx); D(x)  = p2(x) - q(x); q(x)  =- 200  + x ) x 3 / ( K 1  + 4Bx); 20 

- 2yo - a 0 - f10/2; a = K2 /K2;  B - K 2 / K 3 .  

2) Since it is known in advance that x > 0, y > 0, and  z > 0, we are  in teres ted only in solut ions that  satisfy 

the condit ion 0 < (x + y) < f l o /2  and,  in part icular ,  x < f l o /2 .  We denote  the root of the equat ion D(x)  = 0 nearest  

to zero by x* if it is smal ler  than f10/2; otherwise,  we assume that  x* =f10/2.  Since it is evident  that  D(0) > 0, then 

the solution of the equation ~Os(X ) = 0 in algori thmic de te rmina t ion  of ys(x) and Zs(X ) can be sought  on (0, x ' ) .  

3) For this purpose it is reasonable  to use the fork method with pre l iminary  sounding of (0, x~ 

A mathemat ical  exper iment  based on such an algori thm leads us to the conclusion that  only one of the 

functions ~%(x) (ei ther  at s = 1 or s = 2) can have a root on (0, x ' ) .  

Thus,  at prescr ibed initial pressures  the equil ibrium state of the a tmosphere  is e i ther  nonexis tent  or unique. 

In turn if such a state is found and consequently the value of a c  is de te rmined  unambiguous ly ,  then the equation 

~/,(q) = 0 de te rmines  the carbon potential  unambiguously.  Actually,  u/(r/) > 0 with ~p(rl) --, - ~  when q --, 0 and 

g,(r/) -* + oo when 77 --, 0.2. 

Moreover, taking into account the fact that all the e lements  of the algori thm are  s table ,  the problem of 

p red ic t ing  the carbon  poten t ia l  by the  p re sc r ibed  ini t ia l  s ta te  of the a tmosphe re  shou ld  be r e g a r d e d  as a 

conventionally correct problem [3 ]; employing another  algori thm, for example,  the Newton method,  for the initial 

system of Eqs. (3) and  (8), the solution can appear  unstable ,  because of the proximity of the Jacobian of the system 

to zero, as evidenced by a cor responding mathematical  exper iment .  

The proposed algori thm for calculating C makes it possible to obtain an es t imate  of the s tabi l i ty  of the 

result;  this es t imate is involves the exper imenta l ly  incorrect ass ignment  of the a tmosphere  s ta te  found in the inverse 

problem. In this case the values of Pi obta ined  in the problem should be taken as the initial  values,  in t roducing 

into them a control led er ror  that  imitates an exper imenta l  one. As a measure  of the lat ter ,  we can adopt  the value 

of 6 = max- (1Api /p i i  ), where Api  = pg3~i, ~.i is a random variable uniformly dis t r ibuted  on [ -  1.1 ]. As an est imate 
1 _ < i _ < 6  

of the error  in the result  we take ~"= I A C / C I ,  where AC = C - C if C corresponds to the d i s tu rbed  s tate  of the 

a tmosphere .  The  dependence  ~ '= ~'(5) (Fig. 3) provides indicat ion of the control s tabi l i ty  in the case of random 

malfunct ionings in the ass ignment  of equil ibrium state.  
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Thus, a mathematically correct statement of the problem of controlling carbur/zation by varying the 

equilibrium state J the furnace atmospl,~re as well as of the problem of predicting the carbon potential by the 

initial state of the atmosphere turns out to be possible. Corresponding economic algorithms realized in a C-program 

can form a basis for the development of on-line control systems for production installations. 

The authors express their gratitude to V. M. Repin and P. K. Senatorov for organizational support of the 

present work, as well as to A. G. Sveshnikov for useful discussions. 

N O T A T I O N  

C, carbon potential of the furnace atmosphere; t, process duration; x, coordinate of point of carburized 

layer; u, carbon concentration in layer; T, furnace temperature; D, diffusion coefficient; fl, mass exchange 

coefficient; E, alloying parameter; co, initial concentration of carbon in metal; Pi, partial pressure of the t-th 

component of the atmosphere; K l, K*, equilibrium constants of chemical reactions; r/, equilibrium concentration of 

carbon in atomic fractions; ac ,  carbon activity; p, total pressure of gases; cr, critical value. 
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